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We present an exponential time integrator in conjunction with a finite volume discretisa-
tion in space for simulating transport by advection and diffusion including chemical reac-
tions in highly heterogeneous porous media representative of geological reservoirs. These
numerical integrators are based on the variation of constants solution and solving the lin-
ear system exactly. This is at the expense of computing the exponential of the stiff matrix
comprising the finite volume discretisation. Using real Léja points or a Krylov subspace
technique compared to standard finite difference-based time integrators. We observe for
a variety of example applications that numerical solutions with exponential methods are
generally more accurate and require less computational cost. They hence comprise an effi-
cient and accurate method for simulating non-linear advection-dominated transport in
geological formations.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

Advection and diffusion can transport chemically reactive components such as dissolved minerals, colloids, or contami-
nants, over long distances through the highly heterogeneous porous media comprising geological formations. It is hence a
fundamental process in many geo-engineering applications, including oil and gas recovery from hydrocarbon reservoirs,
groundwater contamination and sustainable use of groundwater resources, storing greenhouse gases (e.g. CO2) or radioac-
tive waste in the subsurface, or mining heat from geothermal reservoirs. One of the fundamental challenges is to forecast
these processes accurately because the permeability in heterogeneous porous and fractured media typically varies over or-
ders of magnitude in space and possibly time (e.g. [1,2]). This causes highly variable flow fields where local transport can be
dominated entirely by either advection (Péclet number larger than one) or diffusion (Péclet number less than one), leading to
macroscopic mixing and ‘‘anomalous transport” that is characterised by early breakthrough of solutes or contaminants and
long tailing at late time [3]. Chemical reaction rates and equilibrium constants can vary in a similar manner, giving rise to
complex mixing-induced reaction patterns at the macro-scale because chemical reactions rates can dominate locally over
transport rates or vice versa (e.g. [4–6]).

Predicting the spatial spreading and mixing of reactive solutes in field applications hence requires the efficient and accu-
rate numerical solution of advection–diffusion–reaction equations (ADR) which resolve the wide range in flow velocities and
reaction rates. This is particularly important because the exact spatial distribution of the permeability field and reaction
rates is commonly unknown and therefore a large number of simulations must be run to quantify the uncertainty of the
. All rights reserved.
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transport behaviour [7], for example to forecast the possible arrival of highly toxic contaminants at a groundwater well and
design adequate remediation schemes.

The ADR can be discretised in space by the full range of spatial discretisations (e.g. finite differences, finite volumes, or
finite elements) and each method comprises its own body of literature. However, a fundamental challenge remains. How
to integrate in time the system of stiff ODEs, representing transport and reaction processes evolving over multiple time
scales, in a stable, accurate and efficient way while avoiding non-physical oscillations (e.g. [8,9]). The key problem in porous
media flow is to overcome the limitations of stability criteria, such as the Courant–Friedrich–Levy criterion, when resolving
the huge variation in competing transport and reaction rates. Common methods include implicit or adaptive time-stepping
(e.g. [12,13]) and operator splitting techniques (e.g. [10,11]). Comparatively new methods are streamline-based simulations
where transport is computed along the time-of-flight [14,15], adaptive mesh refinement to focus the computational effort
around the moving fronts and resolve them accurately [16], or event-based simulations where only those regions are up-
dated where an event (i.e. chemical reaction or transport) occurs [17,18].

The family of exponential integrators date back to the 1960s (see [19,20] for history and detailed references). These meth-
ods are based on approximating the corresponding integral formulation of the non-linear part of the differential equation
and solving the linear part exactly and computing the exponential of a matrix. Sidje [24] used the Krylov subspace technique
and Padé approximation to solve the linear system of ODEs based on variation of constants. Cox and Matthews [32] devel-
oped the family of exponential time differencing methods for solving non-linear stiff ODEs. They present the instability issue
for computing non-diagonal matrix exponential functions, the so called u-functions. Kassam and Trefethen [20] used a
fourth order exponential time differencing method and the contour integral technique for computing the matrix exponential
functions to solve the Kuramoto–Sivashinsky and Allen–Cahn PDEs in one dimension. Berland et al. [33] used a Padé approx-
imation to compute the matrix exponential of u-functions and provided a package for exponential integrators which is effi-
cient in one dimension.

Although exponential integrators have the advantage that they solve the linear part exactly in time, this is at the price of
computing the exponential of a matrix, a notorious problem in numerical analysis [36]. However, new developments in real
fast Léja points and Krylov subspace techniques for computing functions of the matrix exponential has revived interest in
these methods. The real fast Léja points technique is based on matrix interpolation polynomials at spectral Léja sequences
[21,22]. The Krylov subspace technique is based on the idea of projecting the operator on a ‘‘small” Krylov subspace of the
matrix via the Arnoldi process [23,24].

In two and three dimensions, the real fast Léja points technique [25,26,22,27] and Krylov subspace technique [25,26] have
been used to implement the matrix exponential of u-functions efficiently in linear advection–diffusion equations. The real
fast Léja points technique is also used for the exponential Euler-Midpoint integrator scheme for solving non-linear ADRs [28]
and for the exponential Rosenbrock-type integrators for solving semi-linear parabolic PDEs [29]. Simulations have been car-
ried out for homogeneous media with constant dispersion tensors, uniform velocity fields, and low Péclet number flows
using finite difference methods or finite element methods for spatial discretisations. In contrast to previous work, we con-
sider heterogeneous media, the exponential time differencing method of order one with the finite volume discretisation in
space and examine high Péclet number flows.

The aim of this paper is to investigate the exponential time differencing method of order one (ETD1) and compare its
performance in terms of efficiency and accuracy to standard semi-implicit and fully implicit schemes for solution of non-
linear ADRs in highly heterogeneous porous media with largely varying Péclet number flows, that is situations where
transport is locally dominated either by diffusion or advection. We use 2D simulations and finite volume discretisations
to demonstrate the efficiency and the accuracy of the exponential scheme ETD1. In the implementation of the ETD1
scheme we also compare the efficiency of the real fast Léja points technique with the Krylov technique for computing ma-
trix exponential.

The paper is organised as follows. In the next section, we present the mathematical and numerical formulations of ADR.
Then we discuss the exponential time differencing stepping schemes for ADR and implementation of the exponential time
differencing of order one (ETD1) using the real fast Léja points and Krylov space techniques. This is followed by two sets of
tests in 2D from homogeneous porous media with exact solutions. This allows us to examine the ETD1 scheme as well as test
feasibility for large systems. We then consider heterogeneous porous media where we take first a deterministic permeability
field and then a random permeability field. In these examples we see that the ETD1 method using the real Léja points tech-
nique is efficient and competitive compared to standard finite difference time integrators. Finally, the discussions and con-
clusions are given.

2. Mathematical and numerical formulations

2.1. Model problem

Our model problem is to find the unknown concentration of the solute C that satisfies the following advection–diffusion–
reaction equation (ADR):
/ðxÞ @C
@t
¼ r � ðDðxÞrCÞ � r � ðqðxÞCÞ þ Rðx;CÞ; ðx; tÞ 2 X� ½0; T�: ð1Þ
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Here we take X to be an open domain of R2 and solve over a finite time interval ½0; T�. / is the porosity (void fraction) of the
rock, and D is the symmetric dispersion tensor. For simplicity we take D to be
D ¼
D1 0
0 D2

� �
ð2Þ
with D1 > 0; D2 > 0. The term R is a reaction function. Possible reaction mechanisms can be adsorption, for example as de-
scribed by a Langmuir isotherm, biodegradation or radioactive decay. The velocity q is given by Darcy’s law as
q ¼ � kðxÞ
l
rp; ð3Þ
where p is the fluid pressure, l is the fluid viscosity, and k is the permeability of the porous medium. Assuming that rock and
fluids are incompressible and sources or sinks are absent, mass conservation is given by r � q ¼ 0. From this we can formu-
late the elliptic pressure equation, which allows us to compute the pressure field in the porous medium
r � kðxÞ
l
rp

� �
¼ 0: ð4Þ
2.2. Space discretisation

We use the classical finite volume method with a structured mesh T [30]. First, we solve the pressure equation (Eq. (4))
and then obtain the velocity field from Eq. (3). This provides the integral of the velocity fqi;jgi2T at each edge j of a control
volume i. Integrating Eq. (1) over i, using the divergence theorem and the flux approximations used in [30] we obtain the
following equation
/iV i
dCiðtÞ

dt
¼ �

Xedges of i

j

½Fi;jðtÞ þ qi;jCjðtÞ� þ ViRðCiðtÞÞ 8i 2 T : ð5Þ
Here, CiðtÞ is the approximation of C at time t at the center of the control volume i 2 T ; Fi;jðtÞ is the approximation of the
diffusive flux at time t at edge j and qi;jCiðtÞ is the approximation of the advective flux at time t at edge j. ViRðCiðtÞÞ is
the approximation of the integral of the reaction term over the ith control volume of area Vi and /i is the mean value of
the porosity / in the control volume i. We apply standard upwind weighting [31,30] to the flux term qi;jCj.

We let h denote the maximum mesh size and use this to indicate our spatial discretisation. We can rewrite Eq. (5) in the
standard way [31] as the following non-linear system of equations for all control volumes i 2 T
dChðtÞ
dt

¼ LChðtÞ þ NðCh; tÞ; t 2 ½0; T�: ð6Þ
Here L is the stiffness matrix coming from the approximations of the advective and diffusive fluxes, ChðtÞ is the concen-
tration vector at all control volumes at time t, and the term NðCh; tÞ comes from the boundary conditions and reaction
term. In Section 4, we also examine the effects of putting the approximation of the advective flux in the non-linear term
NðCh; tÞ.

2.3. Standard time discretisation

We briefly describe two standard time-stepping schemes, the implicit Euler scheme and the semi-implicit Euler scheme.
Later we use these for comparison with the exponential scheme of order one, ETD1. Given the initial data C0

h ¼ C0, the im-
plicit Euler scheme for Eq. (6) is
Cnþ1
h � Cn

h

Dt
¼ LCnþ1

h þ N Cnþ1
h ; tnþ1

� �
ð7Þ
and the semi-implicit scheme is
Cnþ1
h � Cn

h

Dt
¼ LCnþ1

h þ N Cn
h; tn

� �
; ð8Þ
where Dt ¼ tnþ1 � tn is the fixed time-step. For the implicit Euler method we have to solve a non-linear algebraic equation of
the form
f ðXÞ ¼ ðIþ DtLÞX þ DtNðX; tnÞ � Cn
h ¼ 0
at each time-step. For brevity we denote Cnþ1
h as X. We use Newton’s method and a variant of Newton’s method designed for

semi-linear problems [31]. We solve the linear systems using the standard solver in Matlab™ at each iteration in the exact
Newton’s method. For the variant of Newton’s method, the Jacobian of f ; JðXÞ, is approximated by its constant linear part so
that JðXÞ � Iþ DtL. The corresponding quasi-Newton’s iteration is then given by
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Xkþ1 ¼ Xk � ðIþ DtLÞ�1f ðXkÞ ¼ ðIþ DtLÞ�1 DtNðXk; tnÞ � Cn
h

� �
:

This is equivalent to a fixed point method to solve the equivalent equation ðIþ DtLÞ�1f ðXÞ ¼ 0. The approximation of the
Jacobian by its constant linear part allows us to compute the matrix factorisation only once and to reuse this at each
time-step. In the quasi-exact Newton’s method and the semi-implicit Euler scheme we solve the linear systems using either
an LU-decomposition or the standard solver in Matlab™.

3. Exponential time differencing scheme of order one for ADR

3.1. Review of the exponential time differencing methods

We introduce the exponential time differencing stepping scheme of order one (ETD1) for the ADR problem (Eq. (1)) using
the variation of constants. This allows us to write the exact solution of Eq. (6) as
ChðtnÞ ¼ etnLC0 þ etnL
Z tn

0
e�sLNðChðsÞ; sÞds; tn ¼ nDt 2 ½0; T�;
where s is the integration time. Then, given the exact solution at the time tn, we can construct the corresponding solution at
tnþ1 as
Chðtnþ1Þ ¼ eDtLChðtnÞ þ eDtL
Z Dt

0
e�sLNðChðtn þ sÞ; tn þ sÞds: ð9Þ
Note that the expression in Eq. (9) is still an exact solution. The idea behind exponential time differencing is to approximate
NðChðtn þ sÞ; tn þ sÞ by a suitable polynomial [32,20]. We consider the simplest case where NðChðtn þ sÞ; tn þ sÞ is approxi-
mated by the constant NðChðtnÞ; tnÞ and for simplicity consider a constant time-step Dt ¼ tnþ1 � tn. The corresponding
ETD1 scheme is given by
Cnþ1
h ¼ eDtLCn

h þ Dtu1ðDtLÞN Cn
h; tn

� �
; ð10Þ
where u1ðGÞ ¼ G�1ðeG � IÞ ¼ ðeG � IÞG�1 for any invertible matrix G.
Note that the ETD1 scheme in Eq. (10) can be rewritten as
Cnþ1
h ¼ Cn

h þ Dtu1ðDtLÞ LCn
h þ N Cn

h; tn
� �� �

: ð11Þ
This new expression has the advantage that it is computationally more efficient as only one matrix exponential function
needs to be evaluated at each step.

3.2. Efficient computation of the action of u1

It is well known that a standard Padé approximation for a matrix exponential is not an efficient method for large-scale
problems [24,33,36]. Here we focus on the real fast Léja points and the Krylov subspace techniques to evaluate the action
of the exponential matrix function u1ðDtLÞ on a vector v , instead of computing the full exponential function u1ðDtLÞ as
in a standard Padé approximation. The details of the real fast Léja points technique [23,24] and for the Krylov subspace tech-
nique are given in [27,21,22]. We give a brief summary below.

3.2.1. Real fast Léja points technique
For a given vector v , real fast Léja points approximate u1ðDtLÞv by PmðDtLÞv , where Pm is an interpolation polynomial of

degree mj of u1 at the sequence of points fnigm
i¼0 called spectral real fast Léja points. These points fnigm

i¼0 belong to the spectral
focal interval ½a; b� of the matrix DtL, i.e. the focal interval of the smaller ellipse containing all the eigenvalues of DtL. This
spectral interval can be estimated by the well known Gershgorin circle theorem [34]. It has been shown that as the degree
of the polynomial increases and hence the number of Léja points increases, convergence is achieved [27], i.e.
lim
m!1

ku1ðDtLÞv � PmðDtLÞvk2 ¼ 0; ð12Þ
where k � k2 is the standard Euclidian norm. For a real interval ½a; b�, a sequence of real fast Léja points fnigm
i¼0 is defined recur-

sively as follows. Given an initial point n0, usually n0 ¼ b, the sequence of fast Léja points is generated by
Yj�1

k¼0

jnj � nkj ¼ max
n2½a;b�

Yj�1

k¼0

jn� nkj; j ¼ 1;2;3; . . . ð13Þ
We use the Newton’s form of the interpolating polynomial Pm given by
PmðzÞ ¼ u1½n0� þ
Xm

j¼1

u1½n0; n1; . . . ; nj�
Yj�1

k¼0

ðz� nkÞ; ð14Þ
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where the divided differences u1½�� are defined recursively by
u1½nj� ¼ u1ðnjÞ;
u1½nj; njþ1; . . . ; nk� :¼

u1 ½njþ1 ;njþ2 ;...;nk ��u1 ½nj ;njþ1 ;...;nk�1 �
nk�nj

:

(
ð15Þ
We summarise in Algorithm 1 the steps for computing u1ðDtLÞv . In our implementation we estimate the focal interval for
L only once and precompute a sufficiently large number z of Léja points using the efficient algorithm of Baglama et al. [21] for
a focal interval of DtL.

Algorithm 1. Compute u1ðDtLÞv with real fast Léja points. Error em is controlled to a prescribed tolerance tol so that

eL�eja
m < tol.

1: Input: L, v; Dt; tol; z {matrix, vector, time-step, tolerance, number of Léja points to be generated}
2: ½a; b� ¼ getfocalðLÞ {get the focal interval using the Gershgorin circle theorem [34]}
3: n ¼ getLejaða; b; zÞ {generate z fast Léja points from (Eq. (13))}
4: d0 ¼ u1ðn0Þ
5: w0 ¼ v ; p0 ¼ d0w0; m ¼ 0 initialisation
6: While eL�eja

m ¼ jdmj � jwmj2 > tol do
7: wmþ1 ¼ ðDtL � nmIÞwm
8: m ¼ mþ 1
9: dm ¼ u1ðnmÞ

10: for i ¼ 1; . . . ;m do
11: dm ¼ dm�di�1

nm�ni�1
{compute the next divided difference dm}

12: end for
13: pm ¼ pm�1 þ dmwm

14: end while
15: Output: pm

The data is passed as input parameters during each call of the algorithm and scaled by Dt. We observed the same con-
vergence problems as described by Caliari et al. [27], that is problems arising from round-off errors during the computation
of the divided differences (Eq. (15)) and from the large capacity of the spectral focal interval ½a; b�. We were able to resolve
this issue by reducing the time-step size or by using an algorithm for minimising rounding errors from the divided differ-
ences [35] when computing Eq. (15). Note that although it is advised in [27] to compute the divided differences in quadruple
precision we did not find this necessary.

3.2.2. Krylov space subspace technique
The main idea of the Krylov subspace technique is to approximate the action of the exponential matrix function u1ðDtLÞ

on a vector v by projection onto a small Krylov subspace Km ¼ spanfv ; Lv ; . . . ; Lm�1vg [24]. The approximation is formed
using an orthonormal basis of Vm ¼ ½v1;v2; . . . ;vm� of the Krylov subspace Km and of its completion Vmþ1 ¼ ½Vm;vmþ1�. The
basis is found by Arnoldi iteration [37] which uses stabilised Gram–Schmidt to produce a sequence of vectors that span
the Krylov subspace (see Algorithm 2).

Algorithm 2. Arnoldi’s algorithm

1: Initialise: v1 ¼ v
jv j2

{normalisation}
2: for j ¼ 1; . . . ;m
3: w ¼ Lv j

4: for i ¼ 1; . . . ; j do
5: hi;j ¼ wTv i {compute inner product to build elements of the matrix H}
6: w ¼ w� hi;jv i {Gram–Schmidt process}
7: end for
8: hjþ1;j ¼ jwj2
9: v jþ1 ¼ w

jwj2
normalisation

10: end for

Let ej
i be the ith standard basis vector of Rj. We approximate u1ðDtLÞv by
u1ðDtLÞv � jv j2Vmþ1u1ðDtHmþ1Þemþ1
1 ð16Þ
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with
Hmþ1 ¼
Hm 0

0; . . . ;0; hmþ1;m 0

� �
where Hm ¼ VT

mLVm ¼ ½hi;j�:
The coefficient hmþ1;m is recovered in the last iteration of Arnoldi’s iteration.
For a small Krylov subspace (i.e. m is small) a standard Padé approximation can be used to form u1ðDtHmþ1Þ, but a effi-

cient way used in [24] is to recover u1ðDtHmþ1Þemþ1
1 directly from the Padé approximation of the exponential of a matrix re-

lated to Hm [24]. In our implementation we use the function phiv.m of the package Expokit [24], which allows us to compute
the forward ETD1 solution using the previous solution while controlling the local error at each iteration for a given tolerance.
The function phiv.m takes the time step Dt, the matrix L, the vectors u and v , the dimension of the Krylov subspace mj, and
the desired tolerance as the input and provides uþ Dtu1ðDtLÞðLuþ vÞ as the output. This method is accurate for a symmetric
matrix with negative eigenvalues but can be less efficient on very large non-symmetric matrices [23,24].

4. Numerical experiments

To analyse the convergence and efficiency of the ETD1 method for solving ADRs, we apply it to a variety of porous media
flow problems and compare it to our standard time-stepping methods implicit Euler and semi-implicit schemes introduced
in Section 2.3. We consider the following four problems:

1. A linear ADR without reaction term, a heterogeneous dispersion tensor, and a non-uniform velocity field representing
moderate Péclet number flows, for which an analytical solution exists [38].

2. A non-linear ADR in homogeneous media where transport is controlled equally by advection and diffusion (i.e. Péclet
number is 1) for which an analytical solution exists [28].

3. A non-linear ADR for a deterministic permeability field representing a highly idealised fractured porous media. Here
transport is entirely dominated by advection (high Péclet number flow).

4. A non-linear ADR for a stochastically generated permeability field where transport is locally dominated by either advec-
tion or diffusion.

In the two latter applications we use the classical Langmuir isotherm to model the sorption of the transported species
onto the rock surface, i.e.
RðCÞ ¼ kbC
1þ kC

:

The parameter k is an adsorption constant and b the maximum amount of the solute that can be adsorbed. We take k ¼ b ¼ 1
in this work.

For the sake of simplicity we assume that the porosity / is constant in all applications. In all cases we take our domain to
be rectangular X ¼ ½0; L1Þ � ½0; L2Þ but use both, uniform and non-uniform, rectangular meshes. The time has been norma-
lised by the average flow rate and the domain length in the direction of flow such that the mean of the concentration has
traveled through the entire domain at T ¼ 1. In each application example, the matrix L is pentadiagonal. For a grid size
Nx � Ny, the corresponding matrix has the size NxNy � NxNy with 5� NxNy � 2� Nx � 6 non-zero elements.

For pressure, we take the Dirichlet boundary C1
D ¼ f0; L1g � ½0; L2� and Neumann boundary C1

N ¼ ð0; L1Þ � f0; L2g such that
p ¼
1 in f0g � ½0; L2�;
0 in fL1g � ½0; L2�;

�

�krpðx; tÞ � n ¼ 0 in C1
N:
For concentration, we take the Dirichlet boundary CD ¼ f0g � ½0; L2� and Neumann boundary CN ¼ fð0; L1� � f0; L2gg[
ffL1g � ½0; L2�g such that
C ¼ 1 in CD � ½0; T�;
� ðDrCÞðx; tÞ � n ¼ 0 in CN � ½0; T�;
C0 ¼ 0 in X ðinitial solutionÞ;
where n is the unit outward normal vector to CN (or C1
N).

We report below the local or grid Péclet number Peloc ¼maxiPei where Pei is computed over each control volume as
Pei :¼
maxj edge of ijqi;jj
kDik1

:

Di is the mean value of the diffusion matrix over the control volume i and qi;j is the integral of the velocity over the edge j for
the control volume i.



A. Tambue et al. / Journal of Computational Physics 229 (2010) 3957–3969 3963
For applications where we do not have an analytic solution we estimate the global error by
ChðtÞ � CDt
h ðtÞ

			 			
L2ðXÞ
� 2 CDt

h ðtÞ � CDt=2
h ðtÞ

			 			
L2ðXÞ

:

where CDt
h ðtÞ is the approximation of the solution at time t found with time-step Dt. Unless explicitly stated, the tolerance

used for Newton’s method and the ETD1 schemes is 10�6 and the Krylov space dimension used is m ¼ 6. The tests were per-
formed on a standard PC with a 3 GHz processor and 2 GB RAM. Our code was implemented in Matlab 7.7. In the legends of
all of our graphs we use the following notation

� ‘‘Implicit with Newton” denotes results from the implicit Euler with standard Newton method.
� ‘‘Implicit with Newton V” denotes results from the implicit Euler with the variant of Newton method.
� ‘‘Léja ETD1” denotes results from ETD1 with real fast Léja points for matrix exponential.
� ‘‘Krylov ETD1” denotes results from ETD1 with Krylov subspace for matrix exponential.
� ‘‘Semi-implicit” denotes results from the semi-implicit scheme.

4.1. Homogeneous porous media without reaction term

We use this problem to examine the scaling of the ETD1 method for problems with different numbers of unknowns and
analyse the convergence in space by comparing it to an exact solution [38]. Since the ADR does not contain a reaction term,
the problem is linear. The domain is defined as X ¼ ½L0; L1Þ � ½L0; L1Þ, L0 ¼ 0:01, L1 ¼ 2. The initial time is given as t0 ¼ 0:01.
This is necessary because the exact solution is not defined at the origin and at t ¼ 0. The dispersion tensor D is heterogeneous
and its coefficients are given by
D1ðx; yÞ ¼ D0u2
0x2 ðx; yÞ 2 X;

D1ðx; yÞ ¼ D0u2
0y2 ðx; yÞ 2 X:

(

The velocity field (Fig. 1(a)) is given explicitly by
q ¼ ðqx; qyÞ
T
;

qxðx; yÞ ¼ u0x ðx; yÞ 2 X;

qyðx; yÞ ¼ �u0y ðx; yÞ 2 X;

8>><
>>: ð17Þ
where D0 ¼ 0:1 and u0 ¼ 2. The local Péclet number ranges from 21 to 2 as the grid is refined. Initial and boundary conditions
are taken according to the exact solution [38], assuming an instantaneous release at a point ðx0; y0Þ; x0 ¼ 1:5; y0 ¼ 1:5. We
take a fixed time-step of Dt ¼ 1=3000.

Fig. 1(a) shows the streamlines which indicate direction of flow. Fig. 1(b) shows the CPU time needed to compute single
time-step using ETD1 with real Léja points and Krylov techniques as a function of the number of unknowns. The number of
the real fast Léja points used to achieve the given tolerance are 6 for 100 unknowns, and increases to 69 as the grid is refined.

In Fig. 1(b), we show that good values for the dimension of the Krylov subspace are m ¼ 20 and m ¼ 6, but m ¼ 20 appears
to be a slightly better value for this specific example. To our knowledge, there is no rigorous theory that allows us to predict
the optimal value for mj a priori. For example, the default value used in [24] is m ¼ 30 but we observe that this is not the
optimal value for our specific example. When mj increases, the total number of iterations decreases but a penalty occurs
due to the additional time spent in the orthogonalisation process in Algorithm 2 and the corresponding increase in memory
requirements. For small mj, a penalty can arise from an increase in the number of iterations necessary to achieve a given
tolerance, especially if Dt is large, but less time is spent in the orthogonalisation process and the required memory is lower.
Since the memory on the PC used in this work is limited to 2 GB, the values of Dt in our application examples are generally
small, and we require to compute the action of the matrix exponential function u1 on a vector to reach the final time T over
3000 times, we have chosen m ¼ 6 as the optimal value for the Krylov subspace dimension in all our applications.

For 104 and more unknowns, that is for problem sizes that become representative for real reservoir simulations, the com-
putation of the matrix exponential with real fast Léja points is more efficient than the Krylov technique by a factor of approx-
imately 10, regardless of the Krylov subspace dimension mj. Similar results were obtained by Martinez et al. [25] and
Bergamaschi et al. [26] for constant dispersion tensor, constant velocity, and low Péclet number flows. Once the matrix size
is greater or equal to 104, the CPU time increases linearly with the number of unknowns (Fig. 1(b)). The time to evaluate a
matrix with 106 unknowns using 69 real Léja points is 18 s. These results suggest that the ETD1 is a scalable solver and is
hence probably applicable to large-scale problems with several million of unknowns that are encountered in 3D reservoir
simulations.

Fig. 2(a) shows a convergence of order OðhÞ for the spatial discretisation with fixed time step Dt ¼ 1=3000. The error in
the L2 norm is computed at time T ¼ 1. Fig. 2(b) shows the L2 error as a function CPU time, which is depicted in Fig. 2(a).

The efficiency for solving this linear ADR problem is roughly similar for all methods, that is approximately the same com-
putational cost is required to reduce the numerical error by a certain increment. Although Fig. 1(b) indicates that for small
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number of unknowns the Krylov technique requires significantly less computational effort than the real Léja point method to
compute one step with one vector v , Fig. 2(b) shows that over the course of an entire simulation, which involves many indi-
vidual time-steps, the local error control reduces this efficiency, therefore Krylov and Léja point methods are comparable. We
recall that the Krylov subspace implementation is known to be efficient for symmetric matrices. Here we observe good con-
vergence even for highly non-symmetric matrices L.

4.2. Homogeneous porous media with a non-linear reaction term

We now evaluate the ETD1 method for a non-linear ADR problem where the non-linear reaction term is given by
RðCÞ ¼ �cC2ð1� CÞ. We take c ¼ 100, use a constant velocity of q ¼ ½�0:01;�0:01�T , and the dispersion tensor has the entries
D1 ¼ D2 ¼ 10�4. The domain is X ¼ ½0;1Þ � ½0;1Þ, which we discretise with h ¼ Dx ¼ Dy ¼ 10�2. The local Péclet number for
the flow is 1, that is transport is controlled equally by advection and diffusion. The initial condition and boundary conditions
are defined with respect to the exact solution [28] given by
Fig. 2.
ADR in
be m ¼
Cðx; y; tÞ ¼ ð1þ expðaðxþ y� btÞ þ aðb� 1ÞÞÞ�1
; ð18Þ
where a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c=ð4� 10�4Þ

q
and b ¼ �0:02þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c� 10�4

q
.

Fig. 3(a) shows the convergence as a function of the chosen time-step Dt, measuring the error at the final time T ¼ 1. The
semi-implicit time-stepping method and the ETD1 methods have similar error constants. All schemes have the same rate of
convergence OðDtÞ.

Fig. 3(b) shows the L2 error as a function of CPU time, which is given in Fig. 3(a). Again, the computational effort to reduce
the numerical by a certain error is approximately equivalent for both, Léja and Krylov subspace techniques. They are also
similar to a semi-implicit time integrator. However, all three methods, ETD1 with Léja points and Krylov subspace technique
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and semi-implicit time-stepping, outperform the implicit time-stepping methods. Those require about 10 times more com-
putational costs to obtain the same numerical error. If the advective component of the flux is included in the non-linear part
rather than the linear part for the ETD1 scheme, then the error constant worsens. In this case the graph representing the
error would lie between that of the ETD1 or semi-implicit error and implicit error in Fig. 3(a).
4.3. Deterministic heterogeneous porous media and non-linear reaction

We now test the ETD1 method for a porous media with three parallel high-permeability streaks. This could represent, for
example, transport in a highly idealised fracture pattern. The permeability of the three parallel streaks is 100 times greater
than the permeability of the surrounding domain (Fig. 4(a)). Hence flow is diverted from the lower-permeability rocks into
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Fig. 4. Numerical experiments for the non-linear ADR problem in a deterministic heterogeneous porous media (Problem 3): (a) shows the log of
permeability field, (b) shows the velocity streamlines, (c) shows the concentration at t ¼ 0:3 and (d) shows the concentration field at T ¼ 1.
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the high-permeability matrix (Fig. 4(b)). The advection rates increase towards the high-permeability streaks and are highest
in them. This is clearly visible by the closer spacing of the streamlines in the high-permeability streaks (Fig. 4(b)).

For the non-linear reaction term we now take the Langmuir sorption isotherm. The domain is given by X ¼ ½0;2Þ � ½0;3Þ
and discretised in space with Dx ¼ 3=50 and Dy ¼ 1=25. The dispersion tensor is anisotropic with D1 ¼ 10�3, D2 ¼ 10�4. The
viscosity is l ¼ 0:1. The maximum local Péclet number is 2975.4.

Fig. 4(c) shows the concentration at t ¼ 0:3 and Fig. 4(d) the concentration at T ¼ 1. Again, the flow-focusing due to the
high-permeability streaks is clearly visible.
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Fig. 5(a) shows the convergence at the final time T ¼ 1 in the L2 norm for varying time-steps Dt. All schemes show con-
vergence rates ofOðDtÞ. There is now a distinct difference between ETD1 method with Krylov or Léja point technique and the
implicit and semi-implicit integrators. The EDT1 methods displays a clear improvement in the error constant. Fig. 5(b) de-
picts the L2 error at T ¼ 1 as a function of CPU time. The ETD1 based schemes are significantly more accurate and compu-
tationally more efficient than (semi-)implicit schemes. They require between 10 and 100 times less computational effort to
achieve the same reduction in numerical error. The Léja point method has also a small computational advantage over the
Krylov subspace technique.

4.4. Stochastic heterogeneous porous media with non-linear reaction

We finally apply the ETD1 method to a stochastically generated permeability field. Stochastic permeability fields are com-
monly used to represent the unknown heterogeneity in the subsurface. We use the Karhunen–Loeve numerical expansion
[39] to generate the random permeability field from a log-normal distribution with an exponentially decaying space corre-
lation. The correlation in the field is given by
Fig. 7.
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where b1 and b2 are the spatial correlation lengths in x-direction and y-direction, respectively, and given by b1 ¼ 0:4 and
b2 ¼ 0:2. We used the first 30 terms in the Kahunen–Loeve numerical expansion. We used the same stochastically generated
permeability field to evaluate all time integrators. The domain is given by X ¼ ½0;3Þ � ½0;2Þ with Dx ¼ 1=10 and Dy ¼ 1=15.
The dispersion tensor has the entries D1 ¼ 10�3; D2 ¼ 10�4 and the viscosity l ¼ 1. The maximum local Péclet number is
Peloc ¼ 1649:3.

Fig. 6(a) shows the log of the permeability field, which varies over six orders of magnitude ranging from 10�3 to 103.
Fig. 6(b) shows the corresponding streamlines, which show how flow is focused into regions of high-permeability. Advection
rates are significantly higher in regions of high-permeability, reflected by the close streamline spacing, compared to regions
of low permeability. Fig. 6(c) shows the concentration at t ¼ 0:2 and Fig. 6(d) the concentration at T ¼ 1. Both show flow
flow-focusing into the high-permeability regions.

Fig. 7(a) shows the convergence of the L2 norm at T ¼ 1 as a function of Dt. As in all our previous applications, all schemes
have similar convergence rates of OðDtÞ, but there is a clear improvement in the error constant for the ETD1 schemes.
Fig. 7(b) shows the L2 error as a function of CPU time. The ETD1 methods clearly outperform the implicit time integrators,
with the Léja point based scheme being slightly more efficient than the Krylov subspace based methods. The latter shows a
similar performance as the semi-implicit method. Table 1 compares the CPU time necessary to perform 3200 steps of the
ETD1 integration using the real Léja point method and the Krylov subspace technique. We analysed how many Léja points
are required for the first step for different spatial discretisations ranging from 100� 100 grid points to 500� 2000 grid
points. For the largest problem with 106 unknowns only 10 Léja points are required. The total CPU time necessary to find
the solution at final time T ¼ 1 is 5293.3 s.

For the Krylov subspace method (with m ¼ 6) the total CPU time required to find the solution at the final time T ¼ 1 is
14,693 s. We observe that the real Léja point method seems more efficient than the Krylov implementation, taking approx-
imately half the CPU time. We have tested several values for mj and due to the reasons discussed previously, we do not think
that the Krylov subspace technique will be more efficient than the real Léja point method for other values of mj. Neverthe-
less, this example demonstrates that ETD1 methods are probably applicable to large-scale 3D reservoir simulations with sev-
eral million unknowns.
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Table 1
CPU time for the real Léja points and Krylov subspace methods used in Problem 4 as a function of various grid sizes. Nx is the number of subdivisions in the x-
direction and Ny the number in the y-direction. Table shows the number of Léja points used for the first step ML�eja and the CPU time to perform 3200 steps of the
ETD1 method using the Léja point method and Krylov subspace technique (with m ¼ 6).

Nx Ny ML�eja CPU time (s) Léja CPU time (s) Krylov ðm ¼ 6Þ

100 100 6 21 54
200 200 7 123 316
100 1000 7 430 889
200 1000 8 911 2349
100 3000 10 1589 2715
500 2000 10 5293 14,693
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5. Concluding remarks

We have developed an exponential time integrator of order one (ETD1) where the matrix exponential is computed with
either real fast Léja points techniques or a Krylov subspace technique. We have applied it to a variety of linear and non-linear
advection–diffusion–reaction problems in homogeneous as well as highly heterogeneous porous media where the spatial
discretisation was achieved by standard upwind-weighted finite volume meshes on non-uniform rectangular grids. The larg-
est problems comprised 106 unknowns. We compared the performance of the ETD1 method to standard semi-implicit and
implicit time integrators. Transport in our example applications was advection as well as diffusion dominated. All our
numerical examples demonstrate that the ETD1 scheme is highly competitive compared to standard time integrators. This
competitiveness comprises two components: efficiency and accuracy. Generally, the ETD1 method requires at least 10 times
less computational cost compared to implicit time integrators to reduce the numerical error to a certain value. Semi-implicit
time integrators perform at best similar to our ETD1 method. The real fast Léja points technique is on average equivalent or
more efficient than the Krylov subspace technique. A similar observation was made in Martinez et al. [25] and Bergamaschi
et al. [26] for example applications with constant dispersion tensors, uniform velocity fields, and low Péclet number flows,
where the spatial discretisation was achieved by finite difference and finite element space discretisation. A single computa-
tion of ETD1 with real fast Léja points requires a few seconds on a standard PC, even with our uncompiled Matlab code.
Importantly, the CPU time scales linearly with the number of unknowns, which implies that ETD1 could be readily applied
to large-scale 3D reservoir simulations with several million of unknowns. It hence may become a viable alternative to other
scalable solvers such as hierarchical algebraic multigrid methods [40] or multi-scale methods (e.g. [41–43]) which are com-
monly used for large-scale simulations of flow and transport in heterogeneous porous media.
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